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linear theory of elasticity is con- 

herein a layer with circular cylindric 

subjected to a nonuniform rad 1 displacement, The defor- 

mation is imnosed on the cylindrical boundary such that axi- 

symmetric disDlacements and stresses result, . The solution 

utilizes Navier's equations of elasticity. These equations 

are solved by use of extended Hankel transforms to obtain 

displaceaents. Shear and longitudinal stresses are obtained 

by transformed stress-strain relationships. Radial and 

circumferential stresses, however, are obtained directly by 

use of stress-strain equations. 

The solution o f  a problem where the imposed radial dis- 

placement is a linear function of the axial coordinate is pre- 

sented. Numerical results are given in erachical form for 

two different ratios of hole radius to layer thickness. The 

infinite integrals of the inversion f o r m u l a s  were evaluated 

numerically using Longman's technique for computing infinite 

inteqrals of oscillatory functions. 
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I n  1964, S c o t t  and Miklowitz in t roduced  t h e  use  

o f  extended Hankel t r ans fo rms  in problem of e l a s t i c  wave 

propoqat ion,  The problem w n i n f i n i t e  p la te  w i t h  a c i r -  

c u l a r  c y l i n d r i c a l  ho le ,  The c y l i n d r i c a l  boundary was sub- 

j e c t e d  t o  a uniform s t e p  radial displacement  and t h e  r e s u l t -  

ing axia l ly-symmetr ic  compressional  waves were s t u d i e d .  No 

a t t empt  was made t o  determine t h e  s t a t e  o f  stress i n  t h e  body. 

Seco in t roduced  t h e  use  of t h i s  t ype  of t r ans fo rma t ion  i n  

s o l v i n g  an  axisymmetric hea t  conduct ion problem i n  1969, 

The extended Hankel t r a n s f o r m a t i o n s  employed i n  t h i s  

t h e s i s  a r e  based on an expansion formula d iscovered  by 

Weber i n  1873. O r r  r ed i scove red  Webergs formula i n  

1909 by a method of contour  i n t e m a t i o n a  The f o  

o f  t h e  Weber-Orr expansion formula was e s t a b l i s h e d  i n  1922 

by Ti tchmarsh  whop i n  h i s  book broadened i t s  U s e e  The 

fo l lowing  expansion formulas  are g iven  by Titchmarsh 

e (I,%! 

INurnbers i n  brackets r e f e r  'to t h e  ib l iog raphy  a t  
t h e  end of  t h e  t h e s i s B  
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here  
- 

The same s e t  of t r ans fo rms  used b y ' S c o t t  and Wiklowitz 

a r e  employed i n  t h i s  t h e s i s s  Def in ing  t h e  zero and first- 

o r d e r  t r ans fo rms  as 

r e s p e c t i v e l y ,  it fo l lows  from Eqs. (1.1) and ( 1 . 2 )  t h a t  t h e  

i n v e r s e  t ransforms a r e  

P r o p e r t i e s  o f  t h e  t r ans fo rms  which a r e  a p p l i c a b l e  t o  

t h i s  t h e s i s  are presen ted  i n  

The problem t o  be s t u d i e d  i n  t h i s  t h e s i s  is  an out -  

growth o f  the work done by S c o t t  and Miklowitz,  The aim of  

t h i s  study is  t o  m e s e n t  a method f o r  de te rmining  t h e  s t a t i c  

d isp lacements  and s t r e s s e s  throughout  t h e  e l a s t i c  body posed 
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by Scott and Mliklowitz for the case of a nonuniform radial 

displacement e 

The statement of the problem and its analytical sobu- 

tion is presented in Chapt r 11, The technique used to eval- 

uate the inverse transforms numerically is presented in 

Chapter 111. 

are followed by the Summary and Conclusions in Chapter \I. 

Numerical results are given 'in Chapter IV and 



THE PROBLEM 

Consider an elastic lay P of thickness with a cir- 

cular cylindrical hole of radius The cylindrical coor- 

dinate system being the radial coordinate 

being the coordinate along the axis of symmetryg as 

shown in Pig. 1, The layer is resting on a rigid foundation 

in such a way that zero shear stress and zero normal dis- 

placement exists at the interface, 

n axisymmetric radial displacement is imposed on 

the cylindrical boundary which varies.linearly in the 

direction. This imposed deformation, shown in Fig, 2, gives 

rise to axially-symmetric displacements and stresse 

out the layer, 

The problem shown in Fig. 3 remesents an infinite 

f r e e  lslate of thickness with a circular cylindrical hole, 

The plate has an axisymmetric radial disclacement imposed on 

the cylindrical boundary which is also Eymmetric abou't its 

mid-plane. This type of problem, hich could be of practical 

importance, is completely equivalent to the problem represented 

in Figs, 1 and 2, 

The Navier equations of elasticity in cylindrical 
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r 

Figure  1, The e l a s t i c  l a y e r  
geometry and coordinate systeme 
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Figure 2, The imposed radial 
deformation of t h e  bayere 



F i g u r e  3 *  The e q u i v a l e n t  problem, 
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coordinates for the case of axial symmetry are (seep for 

examole, Reference 7 ) ~  

where u and are radial and longitudinal displacementsp 

respectively, and is Poisson@s ratio. 

Solution by Extended Hankel Transforms. 

Followinq Scott and Miklowitz's workB E q s .  (2.1) and 

( 2 , 2 )  will be solved by employing the b transforms 

defined by E q s .  (1.3) and (1.5) and E q s .  (1,4) and (le6)* 

respectively, Using the properties of the transforms given 

in Appendix A and applying the itransform to E q ,  (2.1) and 

transform to Eq. ( 2 . 2 ) ,  the following differential 

equations result: 

(/-.aJ) saz + d/s- ( 2 . 3 )  

(2-4) 

From Fiq, 2, t h e  imposed radial displacement is eiven 
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by t h e  relation 

T h e r e f o r e ,  

(2,bj 

The r equ i r emen t  t h a t  the c y l i n d r i c a l  boundary be f r ee  

o f  s h e a r  s t r e s s  i m p l i e s  t h a t  

S u b s t i t u t i n g  EqsD (2,5),C2,6) rad (2 .7 )  i n t o  E q s .  (2.3) 

and (2.4),  one o b t a i n s : :  

- - - 
s 

I t  can be sho t h a t  t h e s e  e q u a t i o n s  a r e  e q u i v a l e n t  

t o  the - fo l lowing  f o u r t h  orders uncoupled d i f f e r e n t i a l  equa- 

t i o n s :  
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'The general solutions of E q s .  (2*10) anti ( 2 * 1 1 )  are8 

Subst,ituting E q s .  ( 2 , 1 2 )  and (2,13) i n t o  Eq. ( 2 , 8 )  

e i v e s  the f o l l o w i n e  relationships between the arbitrary 

constants8 

c, - - - 

Equation (2,12) now becqrnes 



The stress-strafn re1 tfons for axial s 

(seep for ex l e p  Reference 8)s 

are the Lame'constants. 

Applying the @transform to Eqs. (2.19)9 (2.20) and 

(2 .21)  and the ,transform to Eq. ( 2 . 2 2 ) #  one obtains 

(2,261 



Equations (2,24) and (2,25) are not in a useful form 

ands therefore, E q s ,  (2.20) and (2.21) do not possess suitable 

transformsD Radial and circumferential stresses must be 

obtained from a method other than direct transformaticn of 

their resFective stress-strain relations, Using the integral 

expressions f o r  1 and ) and EqsP 

(2.211, one obtainso 

e 

(2.20) and 

+ 

-6- 

If the following three conditions are satisfied, the 

order o f  interration and differentiation may be interchanged 

( s e e ,  for example, Reference 9 ) a  

( i )  the inteqands are continuous 

(ii) the given integral e x i s t s  

(iii) the resulting integral is uniformly convergente 



It can be shown that these conditions are satisfied. 

The first two conditions are obvious and the third condition 

requires knowledqe of the arbitrary constants in E q s .  (2.13) 

8) which are determined in a later section, 

Interchanging the order of integration and differenti- 
/ 

ation and performing the necessary operations, E q s ,  (2.27) 

and (2,28) become8 
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Completing the operations as prescribed by E q s .  (2.23) 

and ( 2 e 2 6 ) 8  the follnwinq expressions are obtained f o r  trans- 

formed longitudinal and shear stresses8 

c 

The longitudinal and shear stresses can now be obtained 

by inverting E q s .  (2.33) and (2 .34 ) ,  Using E q s .  ( l O 5 )  and 

( 1 a 6 ) 9  one has2 



lem, the following 

boundary conditions can be deduced (refer to Pig, 1 ) r  

a 

tis * ( 2 r 4 " )  

form to both sides of Eqso (2.37) 

orm t c  both sides of Eqs .  (2.38) 

and ( 2 . 3 9 )  one obtains for the transformed boundary conditions: 

Substituting these boundary conditions into E q s .  (2,18),  

(2.33) and (2*34)# t h e  following equations in and 

result I 
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Equat ions (2.45) through (2 .48)  have the  s o l u t i o n s  

c, = 

d 

To reduce t h i s  problem t o  t h a t  worked by S c o t t  and 

( 2 . 5 1 )  

( 2 ,  '52) 

iVliklowitzos i . e .  one where t h e  imposed radial  displacement  

i s  cons t an t  with r e s p e c t  t o  i s  merely s e t  equa l  t o  2ero. 

This  causes  t h e  a r b i t r a r y  c o n s t a n t s  t o  van i sh  and Eqs, ( 2 . 1 3 ) 8  

(2 ,18 ) ,  ( 2 , 2 9 ) ,  (2,3O), (2 ,33)  and ( 2 * 3 4 )  becomes 

b =  ( 2 . 5 3 )  



Using the  property from Appendix 

the above equations can be summarized 

88 



The expressions f o r  agree with the plotted 

data ("long-time solution") by Scott and Miklowit 

addition, the expressions for displacements and stresses 

agree exactly with Lame's solution f o r  a thick-walled cy- 

linder (seep for examplep Heferencel.0) when the outer radius 

is infinite, 

Nondimensionalized Equations, 

The equations f o r  stresses and displacements can be 

nondimensionalized by introducing the following dimensionless 

variables: 2= a 

With these substitutions, Eqs. ( 2 , 5 ) ,  (2,6), ( 2 @ 3 5 ) ,  ( 2 . 3 6 ) ,  

- a 
J 

( 2 . 2 9 )  and ( 2 . 3 0 )  take the nondi.mensiona1 formsr 



e e 

where 



20 



21 

r point occurs at 

tudinail displ 

conditions at this 

pointp howeverp radialp longitudinal and circumferential 

stresses incre se without boundp 

rguments of the independent variable P 

the functions 9 and (Reference Eqs. 2e31p 2.32 

and 2.33) can be shown to approach 

for large arguments of the independent variable and for 

9 the following condition holds8 

Anplying these two properties to E q s ,  ( 2 , 2 9 ) #  ( 2 e 3 0 )  

and ( 2 0 3 5 ) 1 ,  it can be shown the inversion integrals for the 

radial, longitudinal and circumfer ntiab stresses fail to 

exist 



TION OF INVERSE f R  

The numerical inversion of E q s ,  (2 ,63)  through ( 2 @ 6 8 )  

is accomplished using a technique developed by Longman [I 

Lonmanss method is based on Euler's tramformation of a 

convergent, alternating series A brief explanation of 

the method is given below. 

According to Euler's transformation, an infinite series 

.l - e e a  

where 
el 

and 
PPI * - - 

can be exmessed as 

Consider a function which oscillates about zero in 

such a way that the integral 'over each half-cycle is smaller 

in absolute value than that over the weceding half-cycle, 

The infinite integral of this function can be represented 

as an infinite alternating series where the ith term is 

the integral over the jth half-cycle, pplying Euler s 

transformation to this series gives an accurate answer for 

a relative short interval of integration. The degree of 

accuracy is illustrated in Longman's p a 

- 



e this method, it i e p  n cessary to determine the 

of the inversion in equations from which 

the roots are computed, b totic approx 

of the Beseel functionss 

For large values of the radial parameterp mccessive 

magnitudes of the  half-cycle integrations were found t o  

initially incre gnitude existed for the 

third half-cycle. Using a series of seven terms (integrals 

of the first seven half-cycles) to approximate the integral 

and anplyinn Euler's transformation to the last five termsp 

' g i v e s  for the value of the integr 

In this formp each 

d 

term retains its comi:uted sign and the 

sign of the bracketed terms is the same as that of 

P l o t s  of the inversion kernelss 

tions of radial parameter re presented in 

dditionally, selected plots of  various inversion intearands 

are presented, 

11 numerical eo ccomplished by use 

of the Univac 1108, The method of intearation w 

ule, Routines for intemation and evaluation of Bessel 

functions were obt ined from th c library prorr 



RESULTS 

F igures  4 through 17 a r e  p l o t s  of  t h e  nondimensional 

d i sp lacements  and s t r e s s e s  as f u n c t i o n s  of t h e  radial para-  

meter f o r  t h r e e  d i f f e r e n t  v a l u e s  of  t h e  a x i a l  c o o r d i n a t e  

F igures  4 t h r o u g h  7 a r e  f o r  t h e  upper 

Figs .  8 through 13 f o r  t h e  mid-plane ( = .5 )  and Figs.  

14  through 17 f o r  t h e  lower p lane  ( 

Figure has  two curves8 one cor responding  t o  equal  one and 

t h e  o t h e r  f o r  equal  two. The d imens ionless  parameter  

is de f ined  as t h e  r a t i o  of  ho le  r a d i u s  t o  l a y e r  t h i c k n e s s .  

For a l l  computat ions,  t h e  v a l u e s  ;r/ =,3,,&=.s01 and 

were used. F i e u r e s  18 and 19 a r e  s k e t c h e s  of t h e  deformed 

s t a t e  (heavy l i n e s )  superimposed on t h e  undeformed s t a t e  ( l i g h t  

an2.0, r e s p e c t i v e l y ,  

F i s u r e s  4 #  8 and 14 a r e  cu rves  f o r  nondimensional 

radial  d isp lacements ,  e Figures  4 and 8 a r e  curves  f o r  

trie upper s u r f a c e  and mid-plane, r e s p e c t i v e l y o  As showns t h e  

radial  displacernsnts  a r e  smoothp monotonica l ly  d e c r e a s i n g  

f u n c t i o n s ,  The cu rves  i n  F i g e  14 g i v e  t h e  radial displace-  

ment o f  t h e  lower s u r f a c e ,  The cu rves  e x h i b i t  an  i n i t i a l  

i n c r e a s e ,  reach  t h e i r  maximum v a l u e s  a t  s l i g h t l y  g r e a t e r  

t han  u n i t y ,  and approach zero  i n  t h e  same smooth manner as 

t h e  cu rves  of  Figs,  ld. and 8, 
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face and mid-plane, 

becomes positive and t h e  

and circumferential stressesa respectivelys 

circumferential stresses are tensile and approach zero in 

an equally rapid manners would expecte the radial 

stresses have the larger'm values ( > e  

Figures 10, 11, 3 are curves of the nondimen- 

sional radial, longitudi c u m ~ e r @ ~ t i ~ ~  and shear stressesa 

respectivelyp on the mid-plane, R d i a l  and circumferential 

stresses behave as they did on the upper surf 

approximately equ 

is seen to 

is initially tensil 

zero., The curve f o r  shear p f d  varf- 

gnitude. The stress is i n i t i  

ehes 

igures 15# 16 re curves f o r  nondi 

Each curve exhibits s ingul ar i -t 
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discussed later. Th tress is sho 

pid change from tensile to compressive 

a subsequent tendency to eroe The curv 

of radial stress exhibits the same gener 1 propertiese The 

curve for circumferential stress is monotonically decreasing 

and, with the exception of the singularity’, possesses the 

same basic properties as the other curves of circumferential 

stresses. 

Figures 18 and 19 depict the deformed shapes of the 

layer for the two cases of = 2, respectively, It 

can be seen that longitudinal displacement becom insignificant 

with respect to radial displacement for increasing values of 

0 

The singularity that exists at can be best 

understood by considering the imposed boundary conditions. 

The shear stress on the cylindrical boundary is prescribed as 

zero. This fact, as shown by Eq. (2,7)$ requires the following 

coridit ion t 

On the lower surfaces the longitudinal displacement, is 

forced to be zerom This constraint on normal displacement 

gives rise t o  the following condition, 

From these two equations, it can be seen that at 



inconsistent cons% 

s i ngu 1 ar it y 

Curves for stres displacements are plotted 

using computed data over e_ 3 8 5  Below 

duc ed becaus 

cation in the evaluation of the infinite integrals, The 

number of roots of the integr nds tha$ could be used in the 

integration technique described in Chapter I11 became limited 

due t o  their magnitudes, The roots became sufficiently large 

and caused computational overflow in the computer. 

apnroaches D the roots of each integrand increases without 

t values of. close to unityr the first several 

roots take on very larae values, Reference is made to 

dices B and C where the equations for computing the roots and 

curves showing integrand dependence on respectively, 

are shown. With the exce at the singular point, 

all curves were extrapolated to 

provided excellent result 

Figs. 4, 8 and 14, where the data 

extrapolation of the C U ~ V  

provided good results at 

posed as zeroB 

It is interestine to note t features which are con- 

y to what one miqht intuitively Fiase 15 and 

16, it can be seen d longitudinal stresses are 

tensile at ) e  The Isngitudin l stress is tensile 
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because the surface of th 1 hole is negatively 

displaced (upward) but is c to be zero at the lower 

surfaces This extension gives rise to positive strain andB 

thereforep tensile stress. The cylindrical boundary being 

displaced upward is attributed to the absence of shear stress 

on its surface, The radial stress is tensile because the 

larger radial displacement imposed on the upper portion of  

the layer attempts by shear t o  displace the lower portion 

farther than the boundary condition will allow. This a l s o  

explains the odd shape of the radial displacement curve, Fie;, 

14, for the lower surface. 

Reasonable accuracy was obtained in checking the com- 

puted data by use of the followinp stress-strain relation 

for the case of axial symmetryo 
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F i n r e  8, Nondirnension 
displacement as a f 
radial coordinate, 
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F i m f e  9* Nondimensional lonpi- 
t u d l i n a l  displacement as a func- 
tion of radial coordinate, 
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Fi t rure  l s O  Nondimensional radial 
stress as a f u n c t i o n  of radial 
coordinate, 
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MD CONCLUSIONS 

The problem of an e l a s t i c  l a y e r  w i th  a t r a n s v e r s e  

c y l i n d r i c a l  h o l e  be ing  s u b j e c t e d  t o  an  ax ia l ly-symmetr ic  

radial  deformation was i n v e s t i g a t e d .  The s o l u t i o n  t o  t h i s  

problem w a s  achieved by use  of  extended Hankel t ransforms.  

The s o l u t i o n  was based on t r ans fo rming  N a v i e r ' s  equa t ions  of  

e l a s t i c i t y  i n  t h e  radial coord ina te  and s o l v i n g  t h e  r e -  

s u l t i n g  o r d i n a r y  d i f f e r e n t i a l  equa t ions  i n  t h e  a x i a l  coor- 

d i n a t e  e The s o l u t i o n  o f  t h e s e  d i f f e r e n t i a l  equa t ions  

provided t h e  displacement  f u n c t i o n s .  The s t r e s s e s  were ob- 

t a i n e d  by use  o f  s t r e s s - s t r a i n  r e l a . t i ons .  Inve r s ion  of t h e  

displacement  and s t r e s s  f u n c t i o n s  r e q u i r e d  t h e  numerical  eva l -  

u a t i o n  of i n f i n i t e  i n t e e ; r a l s O  

With t h e  excep t ion  of  t h e  s i n g u l a r i t y ,  t h e  cu rves  f o r  

s t r e s s e s  and d isp lacements  were seen  t o  behave i n  a v e r y  nor- 

m a l  manner. The imposed radial displacement  on t h e  c y l i n -  

d r i c a l  boundary i s  obvious ly  i m p r a c t i c a l s  One could n o t  ex- 

pec t  t o  ma in ta in  t h e  s h a r p  co rne r  nd remain wi th in  t h e  c o n f i n e s  

of  l i n e a r  e l a s t i c i t y ,  The pr c t i c a h  i m p l i c a t i o n  of t h i s  

s i n m l a r i t y  (and t h e  t e n s i l e  radial s t r e s s )  can be understood 

by consj.de r i n g  l a r g e  d i s k  of  t h i c  t r a n s v e r s e  

c y l i n d r i c a l  ho le  o f  r a d i u s  Consider t h i s  d i s k  t o  be 
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shrink-fitted (frictionless) onto shaft with a circurn- 

ferential V-groove having the geometry shown in Fig, 3a  It 

can be deduced f rom the results of this study that the zone 

of tensile radical stress would not be in contzct with the 

shaft. Instead, the cylindrical surface of the dis 

maintain a smooth shape in keeping with the boundary condi- 

tions of zero shear stress, e the cylindrical sur- 

face would be perDendicular to the radial axis, 

It is further concluded that, while the forward trans- 

formations o f  Navier's equations and the analytical solutions 

thereof are relatively straightforward, the inversion pro- 

cess requires special attention, It is felt the technique 

presented herein is an acceptable method for numerically 

evaluating the infinite inversion integrals. 
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APPENDICES 



PPEN DI X 

PROPERTIES OF THE TR 

The fo l lowing  p r o p e r t i e s  of  extended riankel t r a n s -  

forms a r e  taken  from S c o t t  and l i k l o w i t z  



5 

dditional p r o p e r t i e s  ( s e e ,  f o r  exampleB Reference 

2) are8 

P a r l a s  showed by contour  i n t e g r a t i o n  t h a t  t h e  

fo l lowing  c o n d i t i o n  is t r u e  



PPENUIX B 

H O O T S  OF THE INTEGRANDS IN THE INVEHSE 'TR 

In order to find the roots of  the inverse integrandsp 

b 
( B 2 )  

it is only necessary to determine the roots of 

which are defined as fo l lows :  

The derivation of the expressions for the roots 

utilizes Stoke's method (seep f o r  example, Heference 14)., 

The following are asymtotic approximations for Bessel func- 

tions of the first and the second kind 



Given Eq. (B3) and letting and 

(B3) becomes 

(BiO) 
D 

It follows t h a t  EqSB (B5)9(B6)9(B7)P(B8) and (B9) can be 

wsi t t en t 

where 

where 



where 

where 

Setting Z:qB (B90) equal to zero and realizinp Lhe 

equalities that exist with the 4 -% 

termsp the following simplification r e s u l t s : :  

For positive values of the z,eros 01 

are represented by,  

Rearranging to s o l v e  f o r  in terms of d gives8 

e -  _ -  . , -  
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r e p r e s e n t s  the ath r o o t  of 6q. ( B I O ) ,  

e t t  i n g  
{ BlE) 

and assuming 
e ) o e  ( e l , : )  m 

it can be shown t h e  expres s ion  f o r  computing t h e  G t h  r o o t  

O f  

( $20  ! 

Using t h e  same procndure as before ,  t h e  expres s ion  

f o r  cornlogtine: the nth r o o t  of 

e (B21) 

Comment e 

The expres s ion  f o r  the roots of 

i s  v e r i f i e d  by Gray and Mathews Data g e n e r s t e d  fro 

(B20) have been v e r i f i e d  by t h e  c u r  es o f  t h e  functions 

presen ted  i n  Appendix C, There is  slight e l ' ro r  i n  the first  

r o o t  d u e  t o  t h e  symtotic appro 



functions being f o r  large arguments, This errorp h 

had no e f f e c t  on the results presented herein, 
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APPENDIX C 

CUHVSY F0i-I I N V E R S I O H  KERI4BLS Nl) SELECTED IDI'J'EGH 

Curves f o r  t h e  i n v e r s i o n  k e r n e l s  and 

i n v e r s i o n  i n t e g r a n d s  and a r e  p re sen ted  as func- 

t i o n s  o f  t h e  independent v a r i  a 'These cu rves  a r e  

r e p r e s e n t a t i v e  i n  n a t u r e  and are not in tended  t o  imply 

s peci f i c importance 

The terms and a r e  de f ined  i n  Ghapter I1 of 

t h e  t e x t  and a r e  de f ined  asr 

where 



Figure C1, Zero-Order inversion 
kernel versus independent variable, 
~ . / ~ ~ = 1 . 0 5 ~  
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6 0  

Figure  C 3 e  Zero-Order inversion 
k e r n e l  ve r sus  independent v a r i a b l e ,  
r/a=i e 
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Figure C - j e  Zero-Order inversion 
kerne l  versus independent variable, 
r/a==3e 5 e 



Figure C6, First-Order inversion 
kernel versus independent vari 
r/a=l e 05 
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Figure C7* Fi r s t -Orde r  inversion 
kernel versus independent variable, 
r/a=f 25. 



Figure  C8, Fi r s t -Orde r  inversion 
kerne l  versus independent variable, 
r/a=l e 5 B, 
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Figure  C 9 ,  First-Order inversion 
k e r n e l  versus independent variable, 
r /ad 5 e 



F i a u r e  C 1 0 ,  First-Order inversion 
k e r n e l  versus independent variable, 
r/a=J 5 a 



Inversion integrand ver sus  
independent variable, radi 
placement, r/a=leIe 
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Figure  C12, Inversion jn teqrand  versus 
independent v iable9 radial dis- 



FiFure C1jO Inversion integrand versus 
independent variable, longitudinal 
displacement, nf/a-bsla 
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Fiqure CI.4, Inversion integrand versus 
independent variable, longitudinal 
displacement r/a=3.51~ 
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